Parameter estimation and optimal experimental design.

نویسندگان

  • Julio R Banga
  • Eva Balsa-Canto
چکیده

Mathematical models are central in systems biology and provide new ways to understand the function of biological systems, helping in the generation of novel and testable hypotheses, and supporting a rational framework for possible ways of intervention, like in e.g. genetic engineering, drug development or treatment of diseases. Since the amount and quality of experimental 'omics' data continue to increase rapidly, there is great need for methods for proper model building which can handle this complexity. In the present chapter we review two key steps of the model building process, namely parameter estimation (model calibration) and optimal experimental design. Parameter estimation aims to find the unknown parameters of the model which give the best fit to a set of experimental data. Optimal experimental design aims to devise the dynamic experiments which provide the maximum information content for subsequent non-linear model identification, estimation and/or discrimination. We place emphasis on the need for robust global optimization methods for proper solution of these problems, and we present a motivating example considering a cell signalling model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

Design of Optimal Experiments for Parameter Estimation of Microalgae Growth Models

Mathematical models are expected to play a pivotal role for driving microalgal production towards a profitable process of renewable energy generation. To render models of microalgae growth useful tools for prediction and process optimization, reliable parameters need to be provided. This reliability implies a careful design of experiments that can be exploited for parameter estimation. In this ...

متن کامل

Optimal Experimental Design for Parameter Estimation of an IL-6 Signaling Model

IL-6 signaling plays an important role in inflammatory processes in the body. While a number of models for IL-6 signaling are available, the parameters associated with these models vary from case to case as they are non-trivial to determine. In this study, optimal experimental design is utilized to reduce the parameter uncertainty of an IL-6 signaling model consisting of ordinary differential e...

متن کامل

Getting the most out of it: optimal experiments for parameter estimation of microalgae growth models

Mathematical models are expected to play a pivotal role for driving microalgal production towards a profitable process of renewable energy generation. To render models of microalgae growth useful tools for prediction and process optimization, reliable parameters need to be provided. This reliability implies a careful design of experiments that can be exploited for parameter estimation. In this ...

متن کامل

A Feedback Optimal Control Algorithm with Optimal Measurement Time Points

Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential p...

متن کامل

Simulation Methods for Optimal Experimental Design in Systems Biology

To obtain a systems-level understanding of a biological system, the authors conducted quantitative dynamic experiments from which the system structure and the parameters have to be deduced. Since biological systems have to cope with different environmental conditions, certain properties are often robust with respect to variations in some of the parameters. Hence, it is important to use optimal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Essays in biochemistry

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2008